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Abstract. The numerical accuracy of the analytical approximations elaborated in part I and of
a variety of other approximations advanced to date is examined, accepting the data on the short-
range order parameters obtained by the Monte Carlo method as a standard. The approximations
exhibiting the most promise for description of actual alloys and other lattice systems (for instance,
interstitial alloys, semiconductors and magnetics) including those with a long-range character
of atomic interactions are revealed. It is stated that, in the framework of the lattice gas model
within a modified thermodynamic perturbation theory, the choice of the inverse effective number
of atoms interacting with one fixed atom as a small parameter of the cumulant expansion along
with taking account of the contributions from only linked irreducible diagrams ensures the fastest
convergence of expansion. It is demonstrated that the use of the grand canonical ensemble
yields the highest numerical accuracy in the statistical–thermodynamic description within the
framework of all approximations elaborated in part I.

1. Introduction

In part I of the present work [1] (hereafter referred to as I), on the basis of the lattice
gas model, in the framework of a number of approximations in a modified thermodynamic
perturbation theory within the grand canonical ensemble, by the use of the thermodynamic
fluctuation method, the expressions for the Fourier transformαk of the short-range order
(SRO) Warren–Cowley parameters [2, 3] were obtained for the case of a two-component
disordered alloy, whoseN sites form a Bravais crystal lattice. Those expressions are the
following:

(1) in the zero approximation

αk = [1+ W̃kc(1− c)/(kBT )]
−1 (1.1)

—the well known formula previously obtained within the spherical model [4–14] and below
named the spherical model approximation;

(2) in the ring approximation (see also [15])

αk = [I + W̃ eff
k c(1− c)/(kBT )]

−1 (1.2)

where

I = N−1
∑
q

[1+ W̃qc(1− c)/(kBT )]
−1
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W̃ eff
k = W̃k − (1− 2c)2

2kBT
N−1

∑
q

W̃qW̃k−q

[
1+ c(1− c)

kBT
W̃q

]−1 [
1+ c(1− c)

kBT
W̃k−q

]−1

;

(3) in the high-temperature approximation of thenth order (n = 0, 1, 2)

αk =
[

1+
n∑
i=0

W̃
(i)

k c(1− c)/(kBT )

]−1

(1.3)

where

W̃
(0)
k = Ṽk

W̃
(1)
k = (kBT )

−1

{
c(1− c)N−1

∑
q

(W̃q)
2− (1− 2c)2

∑
q

W̃qW̃k−q/2
}

W̃
(2)
k = (kBT )

−2

{
c(1− c)(1− 2c)2

[
N−1

∑
q

(W̃q)
2W̃k−q −N−2

∑
q1,q2

W̃q1W̃q2W̃q1+q2

]
+[1−6c(1−c)]2N−2

∑
q1,q2

W̃q1W̃q2W̃k−q1−q2/6−[c(1−c)]2N−1
∑
q

(W̃q)
3

}
;

(4) in the chain approximation

αk = [1+ W̃ eff
k c(1− c)/(kBT )]

−1 (1.4)

where

W̃ eff
k =

W̃k + c2[(W̃k=0)
2+ W̃kW̃k=0(2+ cW̃k=0/(kBT ))]/(kBT )

[1+ W̃k=0c(1− c)/(kBT )]2[1+ W̃kc(1− c)/(kBT )]
;

(5) in the low-concentration approximation

αk = {1+ c(1− c)[1− exp(−µ/(kBT ))− µ/(kBT )+ f̃k]}−1 (1.5)

where

f̃k =
∑
R

[1− exp(−VR/(kBT )) exp(−ik ·R).

In all expressions, the functioñWk is determined as

W̃k = Ṽk + µ (1.6)

whereṼk is the Fourier transform of the (pair) mixing potential andµ is the quantity to be
found from the equation of the following form common for all approximations

N−1
∑
q

αq = 1 (1.7)

on substitution of the functionαk corresponding to each approximation. The summations on
the wave vectorsq andqi are carried over all points in the first Brillouin zone specified by
the cyclic boundary conditions,T is the absolute temperature,kB is the Boltzmann constant
andc is the concentration.

Notice that, being written down within the framework of the canonical ensemble (i.e. at
µ = 0, see I), the expressions for the SRO parameters obtained within the high-temperature
approximation of the third order and the low-concentration approximation are identical to
the expressions obtained by Semenovskaya [16] and by Krivoglaz [17–19], respectively.
That is why, below, we shall call these approximations the modified Semenovskaya and
modified Krivoglaz low-concentration approximations, respectively.

The purpose of the present work is to analyse the relative numerical accuracy as well
as the temperature–concentration and effective radius of atomic interaction intervals of
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quantitative adequacy of the above-mentioned approximations and of a number of other
ones† (including those obtained within the framework of the canonical ensemble) on the
basis of the comparison of their results with those of the Monte Carlo simulations (see also
section 12 in I).

In section 2, the procedure of the Monte Carlo simulations used in the present
investigations is described. In section 3, the comparative study of the numerical accuracy
of the results obtained by the use of the canonical and grand canonical ensembles as well
as by the use of two types of normalization of the correlation function (by summands and
by a multiplier) is performed within a number of approximations. In section 4, the problem
of the choice of the physically adequate solution of the nonlinear integral equation (1.7)
is discussed. In section 5, the relative numerical accuracy and the intervals of correct
applicability of the approximations elaborated in I and of a number of others are analysed.
In section 6, the obtained results are summarized.

2. Procedure of the Monte Carlo simulations

In the present work, the standard Monte Carlo method within the canonical ensemble under
the periodical boundary conditions [20] was applied. At every given temperature, the
equilibrium configuration obtained for the closest, higher temperature from the set of already
investigated ones (or the random distribution for the highest temperature) was used as an
initial configuration for the subsequent transition into an equilibrium state. The absence
of a monotonic change of mean values of each quantity being calculated at Monte Carlo
simulations was chosen as a criterion for the achievement of an equilibrium state. To fulfil
such a criterion, it was generally required to perform 1000–20 000 Monte Carlo (MC) steps
(i.e. the interchanges of two accidentally chosen atoms) per site.

After the achievement of an equilibrium state, at every subsequent MC step the averaging
of each calculated quantity was performed over all MC steps carried out at an equilibrium
state. When the oscillation amplitudes of such averages (being considered as a function of
the number of the performed MC steps) became less than 5% (of the absolute value of the
corresponding average) during the last 10% of steps (from the total number of steps carried
out at an equilibrium state), the values of the averages calculated at the last MC step were
accepted as equilibrium ones.

At every temperature, to eliminate the effect of the boundary conditions, the
simulations were consequently performed at increasing numbers of sites in a sample
N = 203, 303, 403, . . . , until the difference between the simulation results at the last and
penultimate steps became less than 5% (of the absolute value of these results). Then, the
results obtained at the last step were accepted as the desired results of simulations at the
corresponding given temperature.

3. Statistical ensemble choice

All the expressions forαk obtained in I by the use of the grand canonical ensemble can be
initially written in the following common form

αk = 1−N−1
∑
q

βq + βk (3.1)

† The consideration of the approximations additional to those obtained in I is dictated by the absence in the
literature of a comparative review of a variety of approximations advanced to date.
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whereβk is a functional ofW̃k = Ṽk + µ specified for each approximation. In I, from the
general thermodynamic relationships for the grand canonical ensemble, it is stated that the
quantityµ entering (3.1) through the functionWk must satisfy the equation

N−1
∑
q

βq = 1. (3.2)

Substitution of (3.2) into (3.1) gives

αk = βk. (3.3)

Notice that, in section 1, the expressions for all approximations are written just in the form
(3.3).

From the general expression for the grand partition function, it follows (see section 2
in I) that, in (3.1), the transition in consideration from the grand canonical ensemble to
the canonical one may be formally realized by settingµ = 0 or, equivalently, by the
substitution ofṼk instead ofW̃k. After such a transition, in general, the equality (3.2)
will not be satisfied, and, therefore, within the framework of the canonical ensemble, the
expression (3.3) turns out to be invalid, and the initial expression (3.1) withµ = 0 should
be used for the calculations ofαk.

It is obvious that, owing to the presence of the normalizing summands complementary
to βk in (3.1), the functionαk determined by (3.1) satisfies the constraint [7, 21–25]

N−1
∑
q

αq = 1 (3.4)

for an arbitrary form of the functionβk, in particular, independently of the type of statistical
ensemble used for derivation of this function. Let us call such a way of satisfaction of the
constraint (3.4) as in (3.1) normalization by summands. Another normalization method
was established by Clapp and Moss [21, 22]. It lies in the introduction of a normalizing
multiplier and results in the following expression, alternative to (3.1)

αk = βk
[
N−1

∑
q

βq

]−1

. (3.5)

Let us call such a way of satisfaction of the constraint (3.4) as in (3.5) normalization by
multiplier.

We performed the comparative analysis of the numerical accuracy of the expression
(3.1) written down within the framework of both canonical and grand canonical ensembles,
as well as the accuracy of the expression (3.5) (within the canonical ensemble) for all
approximations listed in section 1. The casesc = 0.01, 0.1, 0.25 and 0.5 for f.c.c. alloy
with two types of mixing potential that correspond to taking account of one (V1 > 0) and two
(V1 > 0, V2 = −0.5V1) shells of atomic interactions (Vs is the mixing potential for thesth
coordination shell) were considered. The calculations were performed for the temperature
interval [T0, 2T0], whereT0 is the temperature of the corresponding order–disorder phase
transition. The conclusions on the relative accuracy of approximations were done on the
basis of the comparison of the corresponding values of the SRO parameters for the first
four coordination shells with those obtained by the Monte Carlo method.

It was revealed that, within the framework of the spherical model (1.1), ring (1.2),
modified Semenovskaya (1.3) and chain (1.4) approximations, the application of the grand
canonical ensemble ensures the highest numerical accuracy in all considered cases (see
e.g. figures 1 and 2). For all these approximations, the advantage in accuracy caused
by the use of the grand canonical ensemble essentially increases when the concentration
approaches the equiatomic value. So, for instance, within the ring approximation, such
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a tendency is demonstrated in figure 2. The use of normalization by multiplier (3.5)
instead of normalization by summands within the canonical ensemble results in considerably
less rise of the numerical accuracy of approximations than the use of the grand canonical
ensemble (see e.g. figures 1 and 2). The results obtained within the framework of all four
approximations by the use of the canonical ensemble (with normalization both by summands
and by multiplier) are characterized by an overvalued critical temperature of order–disorder
phase transition (determined by the singularity in the temperature dependence of the SRO
parameters), which, in a number of cases (see e.g. figures 2(c), (d)), may be twice as much
as the temperature of the phase transition calculated by the Monte Carlo method. Note
that the spherical model approximation written down within the framework of the canonical
ensemble without any normalization and within the canonical ensemble with multiplier
normalization is identical to the well known Krivoglaz [18, 19, 26] and Krivoglaz–Clapp–
Moss [21, 22] approximations, respectively.

Figure 1. The dependencies of the SRO parameters for the first coordination shell of the f.c.c.
crystal lattice on the reduced temperature obtained by the Monte Carlo simulations (MC) and
within the framework of the spherical model (1.1) (SM), modified Semenovskaya (1.3) (HT),
chain (1.4) (CHAIN) and Krivoglaz low-concentration (1.5) (LC) approximations with the use
of the grand canonical ensemble (GCE) and of the canonical ensemble with normalization by
multiplier (3.5) (CE+M) and by summands (3.1) (CE+S) for every approximation atc = 0.25,
V1 > 0, Vs = 0 (s > 1).

In all considered cases, within the framework of the modified low-concentration
Krivoglaz approximation, the applications of both the canonical ensemble with normalization
by summands and the grand canonical ensemble lead to the same results, because, in
all considered cases, the approximate solutionµ = 0 turns out to be the physically
adequate solution of the equation (1.7) (or, respectively, (3.2)) within the framework of this
approximation (for more details, see the next section). Note that the use of the canonical
ensemble with the multiplier normalization results in thedecreaseof the numerical accuracy
of the modified low-concentration Krivoglaz approximation in a number of cases (see e.g.
figure 1).

Thus, on the basis of the performed analysis, one may conclude that, to obtain the
results of the highest numerical accuracy, the grand canonical ensemble should be used
in the statistical–thermodynamic description within the framework of all approximations
listed in section 1. Only in the case of relatively low concentrations (for the modified
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Figure 2. The dependencies of the SRO parameters for the first coordination shell of the f.c.c.
crystal lattice on the reduced temperature obtained by the Monte Carlo simulations (MC) and
within the framework of the ring (1.2) (RING) approximation with the use of the grand canonical
ensemble (GCE) and of the canonical ensemble with normalization by multiplier (3.5) (CE+M)
and by summands (3.1) (CE+ S) atV1 > 0, Vs = 0 (s > 1) and (a)c = 0.01, (b) c = 0.1,
(c) c = 0.25 and (d)c = 0.5.

low-concentration Krivoglaz approximation—at any concentration), may one restrict
consideration to the canonical ensemble, because in this case the results weakly depend
(or do not depend at all) on the type of statistical ensemble being used. Thus, in section 5,
at the analysis of the relative numerical accuracy of approximations, those listed in section 1
will be included in consideration within only the grand canonical ensemble.

In conclusion of this section, it must be emphasized that the inverse transition in
consideration from the canonical ensemble to the grand canonical one maynot be formally
realized by the substitution of̃Wk = Ṽk+µ instead ofṼk in the general case. This is evident,
for example, from the high-temperature approximation (1.3), in which such substitution
would result inW̃ (0)

k → Ṽk +µ, whereas in both statistical ensembles we haveW̃
(0)
k = Ṽk.

Furthermore, such substitution may be incorrect for approximations elaborated without the
formalism of paper I. For example, this is the case of the Tahir-Kheli approximation [27],
in which the grand canonical ensemble wasinitially used in the consideration, although a
quantity likeµ does not enter the corresponding finished expressions. Besides, our numerical
test revealed that the numerical accuracy of the Tahir-Kheli approximation modified by the
substitution ofṼk+µ instead ofVk may be less than that of the unmodified one in a number
of cases.
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4. Solution of the equation (1.7)

As a rule, solving the nonlinear equation (1.7) (or, respectively, (3.2) for the quantityµ

within the framework of the approximations listed in section 1, one arrives at the problem
of a choice of physically adequate solution. Within the spherical model, chain and modified
low-concentration Krivoglaz approximations, in all considered cases, this problem was
resolved by means of the choice of a solution of the equation (1.7) that meets the following
inequality under given temperature and concentration and arbitrary values of the wave vector

αk(T , c, µ) > 0 (4.1)

which is the necessary condition of stability (or metastability) of the disordered state of
the alloy [28]. Notice that the boundary of the interval of the values ofµ that satisfy the
condition (4.1) is characterized by a singular behaviour of the quantityαR= = N−1∑

q αq

as a function ofµ, due to the vanishing (under the change of sign) of the quantityα−1
k

for the definite wave vectors at a value ofµ corresponding to the boundary. This fact
provides the possibility of graphical estimation of the region of the values ofµ that meet
the condition (4.1), by means of plotting the dependence of the quantityαR= on µ.

In the framework of the ring and modified Semenovskaya approximations, even within
the region of the values ofµ that meet the condition (4.1), it was found that there exist, as
a rule, a few solutions of the nonlinear equation (1.7). For these two approximations, the
problem of choice of the physically adequate solution was resolved by a consideration of the
case of the extremely high temperatures, when the results of any statistical–thermodynamic
approximation asymptotically approach the corresponding exact results, owing to the
vanishing of the interatomic correlations. In particular, in such a limiting case, the
results obtained within the framework of the canonical and grand canonical ensembles must
asymptotically approach each other, due to the equivalence of these ensembles in the case of
exact consideration (see e.g. [29]). Because, within the framework of formalism developed
in I, the transition from the grand canonical ensemble to canonical one corresponds to the
appropriation of the zero value toµ, it follows that only the solution of the equation (1.7)
that asymptotically tends to zero atT →∞ under any value of concentration is physically
adequate.

In all considered cases, we revealed that under a given type of mixing potential there
always exists auniquesolution of the equation (1.7) that satisfies the denoted criterion, and
just this distinguished solution ensures the highest numerical accuracy of the results of the
calculations of the SRO parameters. So, for example, in the casec = 0.25, kBT/V1 = 1.8,
V1 > 0, V2 = −0.5V1, Vs = 0 (s > 2) the dependence of the quantityαR= = N−1∑

q αq
onµ within the framework of the ring approximation (1.2) is as shown in figure 3(a). In the
region of the values ofµ that meets the condition (4.1) (µ > µc in figure 3(a)–(c)), there are
three solutions of equation (1.7) numbered by 1, 2, 3 in figure 3. However, only one of these
solutions (number 2 in figure 3(a)–(c)) satisfies the condition of the asymptotical vanishing
at T → ∞ for both c = 0.1 andc = 0.25 (see figure 3(b), (c)). The highest numerical
accuracy of the results on the SRO parameters corresponding to physically adequate solution
number 2 is demonstrated in figure 3(d), (f).

It should be noted that within the framework of the ring and modified Semenovskaya
approximations, there exist the temperature–concentration intervals in which the physically
adequate solution of the equation (1.7) becomes approximate rather than exact. For instance,
in the previous case, atkBT/V1 < 1.5, the solutions number 1 and 2 merge together and
satisfy the equation (1.7) only approximately (see figure 3(e)). Nevertheless, for calculations
of the SRO parameters, one should use just this approximate solution, because it meets
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Figure 3. The dependencies of the quantityα000= αR= = N−1∑
q αq on µ at (a)c = 0.25,

kBT/V1 = 1.8; (b) c = 0.25, kBT/V1 = 100; (c) c = 0.1, kBT/V1 = 100; (e) c = 0.25,
kBT/V1 = 1.15 and the dependencies of the SRO parameterα211 corresponding to different
solutions of the equation (1.7) on the reduced temperaturekBT/V1 at (d) c = 0.25 and
(f) c = 0.1 obtained within the framework of the ring (1.2) approximation in the case of
V1 > 0, V2 = −0.5V1, Vs = 0 (s > 2).

the conditionµ → 0 at T → ∞ for every concentration, despite the existence of the
other, exact solution (number 3 in figure 3(e)), which does not meet this condition. In all
considered cases, the validity of the above statement is confirmed under the comparison of
the numerical accuracy of the calculations of the SRO parameters by the use of physically
adequate, approximate and inadequate, exact solutions (see e.g. the regionkBT/V1 < 1.5
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in figure 3(d)). It is notable that, using the approximate solution of the equation (1.7) in
calculations of the SRO parameters, one should apply the expression (3.1) rather than (3.3)
even in the case of the grand canonical ensemble.

5. Numerical accuracy of approximations

In figures 4–11, the dependencies of the SRO parameters for the first four coordination
shells of the f.c.c. crystal lattice on the reduced temperaturekBT/V1, which we obtained
by the Monte Carlo simulations (see section 2) as well as within a number of analytical
approximations, are plotted. The data corresponding to the disordered state of alloy obtained
by Golosov et al [30, 31] within the framework of the cluster-variation method in the
tetrahedral approximation are also presented. For each of the concentrationsc = 0.01,
0.1, 0.25 and 0.5†, two following types of mixing potential:V1 > 0, Vs = 0 (s > 1)
and V1 > 0, V2 = −0.5V1, Vs = 0 (s > 2) are used. Such a choice permits us to
reveal the tendencies in the change of the numerical accuracy of approximations under a
variation of both the concentration and effective radius of atomic interactions. In each
case, the [T0, 2T0] temperature interval is considered (T0 is the temperature of the order–
disorder phase transition), because such an interval is the most important in view of the
experimental measurements of the SRO parameters. In figures, the point of the phase
transition corresponds to the abrupt change or to the point of inflection of the temperature
dependence of the SRO parameters obtained by the Monte Carlo method‡.

In the case of approximate coincidence of curves corresponding to different
approximations, with the aim of clarity, the unique curve is plotted and put in correspondence
to all such approximations. The absence of a curve corresponding to some approximation
in a figure indicates that, owing to the low numerical accuracy of this approximation,
a corresponding curve cannot be presented within the considered temperature interval (i.e.
Tc > 2T0) and/or the inclusion of this curve in the figure results in visual indistinguishability
of the other curves. For example, this is the case ofc = 0.5, V2 = 0, when the
value of the reduced temperaturekBT/V1 = 1 is critical for the Krivoglaz–Clapp–
Moss [18, 19, 21, 22, 26] approximation, whereas the corresponding value of the reduced
temperature of the phase transition obtained by the Monte Carlo methodkBT/V1 = 0.44,
and, therefore, the results obtained within this approximation cannot be presented in the
considered [T0, 2T0] temperature interval in the corresponding figure 10.

Accepting the results of the Monte Carlo method as a standard, on the basis of the data
presented in figures 4–11, one may conclude the following.

In all considered cases, except for relatively low concentrationsc = 0.01 (V2 = 0 and
V2 6= 0), c = 0.1 (V2 = 0), the ring (1.2) approximation yields adequate§ results in the entire
temperature interval excluding the immediate vicinity of the phase transition temperature.
Note that, in the casesc = 0.25,V2 6= 0 (figure 9) andc = 0.5, V2 6= 0 (figure 11), the ring
approximation is adequate even at the temperature of the phase transition. The numerical
accuracy of this approximation essentially rises when the concentration approaches the

† The consideration of concentrations greater than the equiatomic one is not required due to the invariance of
statistical–thermodynamic properties of the alloys with concentration-independent pair atomic interactions with
respect to the transformationc→ (1− c) [32].
‡ It should be noted that the lowest temperature limit of applicability of all the considered approximations is the
critical temperatureTc of the absolute instability of the disordered state rather than the temperatureT0 of the
order–disorder phase transition (Tc 6 T0). Thus, it is obvious that the SRO shown in figures 1–11 for a number
of approximations atT < T0 is metastable.
§ Below, unless otherwise specified, the term ‘adequacy of an approximation’ is used in reference to the high
numerical accuracy of an approximation for the coordination shells from first to fourth, inclusive.
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Figure 4. The dependencies of the SRO parameters for the (a) first, (b) second, (c) third
and (d) fourth coordination shells of the f.c.c. crystal lattice on the reduced temperature
obtained within the framework of the Monte Carlo method (MC), Krivoglaz–Clapp–Moss
formula [18, 19, 21, 22, 26] (KCM) as well as the spherical model (1.1) (SM), ring (1.2) (RING),
modified Semenovskaya (1.3) (HT) and Krivoglaz low-concentration (1.5) (LC), chain (1.4)
(CHAIN), Tokar–Masanskii–Grishchenko [12, 34] (TMG), Christy–Hall [35] (CH), Vaks–Zein–
Kamyshenko two-cluster (VZK(2)) and 4–2-cluster (VZK(4–2)) [33] and Tahir-Kheli [27] (TK)
approximations atc = 0.01, V1 > 0, Vs = 0 (s > 1).

equiatomic value and/or when the atomic interactions on the second coordination shell are
taken into account. Notice that the latter fact is in accordance with the choice of the
inverse effective number of atoms interacting with one fixed atom as a small parameter in
the corresponding perturbation theory within the ring approximation. The high numerical
accuracy of this approximation even in the cases of the short-range atomic interactions
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Figure 5. The same as in figure 4 atc = 0.01, V1 > 0, V2 = −0.5V1, Vs = 0 (s > 2).

clearly demonstrates the quick convergence of the cumulant expansion under such a choice
of small parameter.

The spherical model (1.1) and modified Semenovskaya (1.3) approximations yield
adequate results atc = 0.25 and c = 0.5 for both used types of mixing potential,
at all considered temperatures except for the immediate vicinity of the phase transition
temperature. The Tahir-Kheli approximation [27] gives adequate results in a comparatively
wide temperature interval only in two cases,c = 0.25, 0.5 at V2 6= 0. The
numerical accuracy of the spherical model, modified Semenovskaya and Tahir-Kheli
approximations rises as the atomic interactions at the second coordination shell are taken
into account.

The Krivoglaz–Clapp–Moss formula [18, 19, 21, 22, 26] and the chain (1.4) approxima-
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Figure 6. The same as in figure 4 atc = 0.1, V1 > 0, Vs = 0 (s > 1).

tion yield adequate results in none of the considered cases, almost in the entire considered
temperature interval. The numerical accuracy of the Krivoglaz–Clapp–Moss formula has a
tendency to increase when the characteristic radius of atomic interactions enlarges as well
as on decrease of concentration. The modified Krivoglaz low-concentration approximation
yields adequate results in a wide temperature interval only in the casesc = 0.01, 0.25 at
V2 = 0, c = 0.1 atV2 6= 0. If c→ 0 the Krivoglaz low-concentration and both considered
Vaks–Zein–Kamyshenko approximations [33] asymptotically approach each other. Note
that the latter statement may be also easily proved analytically.

In the entire temperature interval except for the immediate vicinity of the phase transition
temperature, the results obtained within the framework of the Tokar–Masanskii–Grishchenko
approximation [12, 34] are adequate in all considered cases except forc = 0.01, V2 = 0
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Figure 7. The same as in figure 4 atc = 0.1, V1 > 0, V2 = −0.5V1, Vs = 0 (s > 2).

andV2 6= 0, c = 0.1, V2 6= 0. Note that, in two cases,c = 0.01, V2 6= 0 (for the entire
considered temperature interval) andc = 0.1, V2 6= 0 (for reduced temperatures less than
0.91), the solutions of the corresponding set of nonlinear equations for determination of the
SRO parameters within the framework of this approximation do not exist and thus cannot
be presented in the corresponding figures 5 and 7.

The Vaks–Zein–Kamyshenko two-cluster approximation within the cluster-field method
[33] gives adequate results in almost the entire considered temperature interval in the cases
c = 0.01, V2 = 0 andc = 0.1, 0.25, 0.5,V2 6= 0. For the Vaks–Zein–Kamyshenko 4–
2-cluster approximation such cases arec = 0.01, V2 = 0 andc = 0.1, 0.25,V2 = 0 and
V2 6= 0. The transition from the Vaks–Zein–Kamyshenko two-cluster approximation to the
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Figure 8. The same as in figure 4 atc = 0.25, V1 > 0, Vs = 0 (s > 1). The CVM designation
corresponds to the results of the cluster-variation method in the tetrahedral approximation from
[30, 31].

4–2-cluster one leads to higher numerical accuracy of results in all considered cases, except
for c = 0.01, 0.5,V2 6= 0. Thus, one can suppose that the convergence of the corresponding
cluster expansion is not necessarily quick.

Within the Christy–Hall [35] approximation, the data on the SRO parameter for the first
coordination shell are adequate in the casesc = 0.01, 0.1,V2 = 0, c = 0.1, V2 6= 0, and
for the second coordination shell in the casec = 0.01, V2 6= 0 for the whole considered
temperature interval. It should be emphasized that, within the Christy–Hall approximation,
the SRO parameters are identically equal to zero for all coordination shells with zero values
of the mixing potential. Notice, also, that, taking into account the atomic interactions only
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Figure 9. The same as in figure 4 atc = 0.25, V1 > 0, V2 = −0.5V1, Vs = 0 (s > 2).

for the first coordination shell, this approximation yields the same results as within the
quasichemical approximation for the SRO parameter for the first coordination shell (see e.g.
[18, 36–38]).

The cluster-variation method in the tetrahedral approximation [30, 31] gives adequate
results for the SRO parameter for the first coordination shell atc = 0.25, V2 = 0 and
adequate but somewhat less accurate ones atc = 0.5, V2 = 0. However, in both cases, this
method is at a disadvantage on the numerical accuracy in relation to the ring, spherical model
and Tokar–Masanskii–Grishchenko approximations. Unfortunately, although, up to now, the
cluster-variation method (in different modifications) has been extensively advanced (see e.g.
[25, 30, 31, 39–46]), we could not carry out more detailed analysis of the numerical accuracy
of this method, due to the absence of the appropriate numerical data in the literature.
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Figure 10. The same as in figure 8 atc = 0.5, V1 > 0, Vs = 0 (s > 1).

In all above considered model cases, the short-range character of atomic interactions
was imposed, in contrast to the case of actual alloys (see section 1 in I). That is why we
considered the case of the Ni0.89Cr0.11 alloy at T = 833 K, for which detailed information
on the atomic interactions as well as data on the Monte Carlo simulations were obtained
by Schweika and Haubold [47]. In table 1, the results of the Monte Carlo simulations
of the SRO parameters for the first 24 coordination shells in this alloy, as well as of the
corresponding calculations carried out by us within the framework of the above discussed
approximations, are summarized.

On the basis of the data presented in table 1, one can conclude that, in the
case of the Ni0.89Cr0.11 alloy, the ring, Tokar–Masanskii–Grishchenko and Vaks–Zein–
Kamyshenko 4–2-cluster approximations give the values of the SRO parameters that belong
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Figure 11. The same as in figure 4 atc = 0.5, V1 > 0, V2 = −0.5V1, Vs = 0 (s > 2).

to the appropriate confidence intervals of the Monte Carlo method for all 24 considered
coordination shells. The values obtained within the framework of the modified Krivoglaz
low-concentration approximation do not belong to the appropriate confidence intervals of
the Monte Carlo method for one (first), those within the Vaks–Zein–Kamyshenko two-
cluster approximation for two (first, second), those within the spherical model approximation
for three (first, third, fifth), and those within the modified Semenovskaya and Tahir-
Kheli approximations for three (first, second, fifth) coordination shells, respectively. The
Krivoglaz–Clapp–Moss formula as well as the chain and Christy–Hall approximations yield
results that do not belong to the appropriate confidence intervals of the Monte Carlo method
for six, eight and twelve coordination shells, respectively.
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Table 1. The SRO parametersαlmn×104 (wherelmn is the index of the coordination shell) for
Ni0.89Cr0.11 at T = 833 K. The designations of approximations are the same as in figures 4–11.

lmn MCa Ring TMG SM HT TK KCM Chain LC CH VZK(2) VZK(42)

110−536(18)−555.4−540.8−614.8b−591.6b−569.8b−653.6b−341.1b−514.0b−564.6b−513.7b −537.8
200 391(20) 390.4 396.9 386.9 425.1b 419.9b 419.8b 247.4b 408.2 312.3b 368.0b 378.9
211 93(10) 97.8 94.8 111.0b 104.7 97.9 123.2b 83.4 89.3 44.2b 88.5 93.0
220−115(10)−114.0−116.1−118.0 −116.4 −115.3 −126.0 −69.3b−118.3 −133.2b−112.9 −113.2
310 −35(8) −41.9 −41.4 −46.8b −48.1b −43.9b −54.3b −46.8b −38.0 0.0b −36.4 −39.2
222 −72(12) −69.6 −70.5 −78.3 −79.0 −72.5 −91.2b −81.5 −67.3 5.5b −63.4 −67.0
321 34(8) 31.5 32.1 31.4 33.5 32.9 34.6 24.2b 34.5 27.5 31.0 31.4
400 4(10) 5.3 6.2 7.5 8.9 6.3 11.8 24.8b 3.8 −24.4b 2.8 4.0
411 9(8) 12.8 12.6 12.8 13.8 13.4 14.2 9.4 13.5 10.9 12.0 12.4
330 57(10) 55.3 54.7 54.6 56.3 56.9 57.7 27.1b 61.6 61.1 55.8 55.9
420 −22(7) −19.8 −19.7 −20.8 −21.4 −20.3 −23.3 −15.1 −19.9 2.7b −18.6 −19.3
332 18(7) 20.3 20.6 19.9 21.4 21.3 21.8 15.4 23.2 24.7 20.3 20.5
112 −18(8) −23.1 −23.0 −24.5 −25.0 −23.9 −27.4 −20.8 −23.7 −13.6 −22.0 −22.9
431 1(6) 1.1 1.7 −0.7 0.6 1.6 −1.6 −4.3 3.4 13.7b 2.1 1.6
510 −6(8) −4.1 −4.1 −4.6 −4.6 −4.2 −5.4 −6.5 −3.9 −2.7 −3.7 −3.9
521 23(5) 23.4 23.2 23.8 24.5 24.0 26.1 17.5 25.2 19.2 22.9 23.3
440 27(11) 27.7 27.9 26.7 28.0 28.4 28.5 16.9 31.8 35.9 28.3 28.2
433 10(7) 8.8 9.0 8.3 8.9 9.2 8.6 2.8 10.3 10.9 9.1 9.0
530 −10(10) −5.4 −5.1 −6.4 −5.7 −5.1 −7.2 −5.5 −4.7 2.7b −4.9 −5.2
442 17(8) 15.6 15.5 16.0 16.3 15.9 17.6 11.8 16.8 13.7 15.4 15.6
600 10(12) 7.7 7.7 9.4 9.1 7.7 11.9 15.5 7.2−8.2b 6.7 7.3
532 −20(5) −21.1 −21.1 −21.2 −21.5 −21.4 −22.5 −10.9b −22.7 −21.7 −21.1 −21.2
611 −23(7) −21.5 −21.4 −22.6 −22.7 −21.8 −25.1 −17.5 −22.3 −13.6b −20.7 −21.3
620 10(7) 7.3 7.4 7.2 7.5 7.5 7.7 4.3 8.4 8.2 7.5 7.5
541 −1(6) −2.7 −2.5 −3.4 −3.0 −2.6 −4.0 −3.9 −2.1 2.7 −2.3 −2.6
622 3(6) 3.5 3.5 3.4 3.4 3.5 3.5 0.4 3.9 2.7 3.5 3.5
631 5(6) 5.0 5.0 5.0 5.1 5.1 5.3 2.5 5.7 5.5 5.1 5.1
444 0(11) 3.9 4.1 3.7 4.4 4.2 4.6 6.0 4.7 0.0 3.8 3.9
550 23(10) 27.9 27.8 27.6 28.6 28.7 29.5 16.2 31.0 30.3 28.0 28.2
543 −2(6) −4.9 −4.9 −5.0 −5.2 −5.0 −5.7 −5.0 −5.2 −2.7 −4.7 −4.8
710 −3(8) 3.1 3.0 3.3 3.2 3.1 3.7 2.2 3.1 0.0 2.9 3.0

a The data of Schweika and Haubold from [47].
b The value of a SRO parameter that does not belong to the appropriate confidence interval of the Monte Carlo
method (see MC column).

Note that, due to the comparatively large size of the confidence intervals of the Monte
Carlo method in the case of the Ni0.89Cr0.11 alloy†, one may not consider the belonging
of the SRO parameters values obtained within some approximation to these intervals as
an evidence of high numerical accuracy of approximation. Moreover, on the basis of the
previous results concerning both the high numerical accuracy of the ring approximation in
the case of short-range atomic interactions and the tendency of this accuracy to enhance
with increase of the characteristic radius of interactions, just the ring approximation data
(rather than the Monte Carlo ones) may be considered as a standard in the case of the
Ni0.89Cr0.11 alloy.

† As well as due to the absence of the corresponding test on the elimination of the boundary condition effect.
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6. Summary and conclusions

On the basis of the performed comparative study of the numerical accuracy of the
approximations, one can conclude the following.

At the calculations of the SRO parameters, the ring (1.2) approximation demonstrates
high numerical accuracy of results in wide temperature and concentration intervals for
alloys with both short- and long-range atomic interactions. The numerical adequacy of this
approximation rises when the composition of alloy approaches the equiatomic value as well
as with an increase of the characteristic radius of atomic interactions. All the foregoing,
taking into account the comparative analytical simplicity of the ring approximation, ensures
its effective use in the statistical–thermodynamic description of actual alloys and other
lattice systems (for instance, semiconductors and magnetics) including those with a long-
range character of atomic interactions‡.

The transition in consideration from the canonical ensemble to the grand canonical one in
the statistical–thermodynamic description within the framework of all approximations listed
in section 1 yields usually considerable rise of the numerical accuracy of the results. Only in
the case of comparatively low concentrations (for the modified low-concentration Krivoglaz
approximation at any concentration), the results weakly depend (or do not depend at all)
on the type of statistical ensemble being used (see section 3). The use of normalization by
multiplier (3.5) instead of normalization by summands (3.1) within the canonical ensemble
results in considerably less rise of the numerical accuracy of approximations than the use
of the grand canonical ensemble. Moreover, in a number of cases, the use of a multiplier
normalization results in a decrease of the numerical accuracy.

In the framework of the lattice gas model, within the thermodynamic perturbation theory,
the choice of the inverse effective number of atoms interacting with one fixed atom as a small
parameter of the cumulant expansion along with taking account of the contributions from
only linked irreducible diagrams ensures the fastest convergence of the cumulant expansion.
Such an approach leads to the well known spherical model approximation (1.1) and to
the new, high-accuracy ring (1.2) approximations. Taking into account the contributions
from the reducible diagrams in the cumulant expansion (as in the chain approximation
(1.4)) as well as the choice of the inverse temperature or the concentration of the impurity
component (as in the modified Semenovskaya (1.3) and Krivoglaz low-concentration (1.5)
approximations, respectively) as a small parameter of expansion results in a comparatively
slower convergence of the cumulant expansion.

The results obtained within the spherical model approximation (1.1), modified
Semenovskaya (1.3) and Tahir-Kheli [27] approximations demonstrate the high numerical
accuracy in wide (but comparatively narrower than that of the ring approximation)
concentration intervals near the equiatomic composition, and the width of such intervals
enlarges with the increase of the effective radius of atomic interactions.

The cluster-variation method in the tetrahedral approximation [30, 31] gives adequate
results in a wide temperature interval in two considered cases of the short-range interatomic
potentials, for which the corresponding table data on the SRO parameters are available.
However, the numerical accuracy of this method is lower than that of the ring, spherical
model and Tokar–Masanskii–Grishchenko [12, 34] approximations. The accuracy of the
results of this method becomes higher when the composition of the alloy decreases.

The Christy–Hall [35] approximation gives high-accuracy results for SRO parameters

‡ In [48], on the basis of a comparison with the results of the cluster-variation and Monte Carlo methods, a correct
description of the temperature–concentration dependence of the Fourier transform of the SRO parameters within
the framework of the ring approximation is demonstrated.
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only for coordination shells with nonzero values of atomic interactions in the case of low
concentrations. Its numerical accuracy is enhanced with the increase of the effective radius
of atomic interactions.

The Krivoglaz–Clapp–Moss formula [18, 19, 21, 22, 26] demonstrates a very low
numerical accuracy of results at all considered temperatures, compositions and types of
the mixing potential. However, the numerical accuracy of its results has the tendency
to increase, when the characteristic radius of atomic interactions enlarges as well as at a
decrease of the concentration.

The chain (1.4) approximation demonstrates very low numerical accuracy of results at
all considered temperatures, compositions and types of mixing potential.

The use of the Tokar–Masanskii–Grishchenko† [12, 34], modified Krivoglaz
low-concentration (1.5), Vaks–Zein–Kamyshenko two-cluster and 4–2-cluster [33]
approximations yields results of both high and low numerical accuracy. Unfortunately, it
seems to be unfeasible to evaluate the limits (concerning the temperature, concentration
and the effective radius of atomic interactions) of the correct applicability of these
approximations on the basis of the consideration performed in the present work.

It should be noted that among all the considered approximations, only the chain (1.4),
modified Krivoglaz low-concentration (1.5) and Vaks–Zein–Kamyshenko 4–2-cluster [33]
ones are not invariant with respect to the transformationc → (1− c). Thus, within these
approximations the initial symmetry of the Hamiltonian is not saved [32]. This fact may be
considered as one of the explanations for the low numerical accuracy of these approximations
in a number of cases.

All approximations discussed in the present paper may be divided into two groups.
The approximations from the first group (namely, the spherical model, ring, modified
Semenovskaya, chain, Tokar–Masanskii–Grishchenko, Tahir-Kheli and Krivoglaz–Clapp–
Moss ones) require the knowledge of the Fourier transform of the mixing potential to
carry out the calculations, whereas those from the second group (namely, the Monte
Carlo and cluster-variation methods as well as the modified Krivoglaz low-concentration,
Christy–Hall and Vaks–Zein–Kamyshenko approximations) require the representation of
the mixing potential in real space form. It should be noted that the ‘real space’ statistical–
thermodynamic approximations have several disadvantages as compared to the ‘reciprocal
space’ ones in a description of actual alloys with a long-range character of atomic
interactions. Firstly, within the Monte Carlo and cluster-variation methods, the ‘real
space’ calculations have a strong tendency to become more complicated with an increase
of the effective radius of atomic interactions. Secondly, all the ‘real space’ statistical–
thermodynamic approximations have aprincipal disadvantage, because they approximate
the mixing potential by its values for afinite number of coordination shells, whereas such a
specific feature of the mixing potential of actual alloys as the nonanalyticity of its Fourier
transform (see e.g. [23–25, 50]) cannot be described in terms of the values of the mixing
potential for any great but finite number of coordination shells.
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